多类神经网络是现代无监督的领域适应性中的常见工具,但是在适应性文献中缺乏针对其非均匀样品复杂性的适当理论描述。为了填补这一空白,我们为多类学习者提出了第一个Pac-Bayesian适应范围。我们还提出了我们考虑的多类分布差异的第一个近似技术,从而促进了界限的实际使用。对于依赖Gibbs预测因子的分歧,我们提出了其他PAC-湾适应界限,以消除对蒙特卡洛效率低下的需求。从经验上讲,我们测试了我们提出的近似技术的功效以及一些新型的设计概念,我们在范围中包括。最后,我们应用界限来分析使用神经网络的常见适应算法。
translated by 谷歌翻译
Neural networks trained with ERM (empirical risk minimization) sometimes learn unintended decision rules, in particular when their training data is biased, i.e., when training labels are strongly correlated with undesirable features. To prevent a network from learning such features, recent methods augment training data such that examples displaying spurious correlations (i.e., bias-aligned examples) become a minority, whereas the other, bias-conflicting examples become prevalent. However, these approaches are sometimes difficult to train and scale to real-world data because they rely on generative models or disentangled representations. We propose an alternative based on mixup, a popular augmentation that creates convex combinations of training examples. Our method, coined SelecMix, applies mixup to contradicting pairs of examples, defined as showing either (i) the same label but dissimilar biased features, or (ii) different labels but similar biased features. Identifying such pairs requires comparing examples with respect to unknown biased features. For this, we utilize an auxiliary contrastive model with the popular heuristic that biased features are learned preferentially during training. Experiments on standard benchmarks demonstrate the effectiveness of the method, in particular when label noise complicates the identification of bias-conflicting examples.
translated by 谷歌翻译
实际数据集中不可避免地有许多错误标记的数据。由于深度神经网络(DNNS)具有记忆标签的巨大能力,因此需要强大的训练方案来防止标签错误降低DNN的概括性能。当前的最新方法提出了一种共同训练方案,该方案使用与小损失相关的样本训练双网络。但是,实际上,培训两个网络可以同时负担计算资源。在这项研究中,我们提出了一种简单而有效的健壮培训计划,该计划仅通过培训一个网络来运行。在训练过程中,提出的方法通过从随机梯度下降优化形成的重量轨迹中抽样中间网络参数来生成时间自我启动。使用这些自我归档评估的损失总和用于识别错误标记的样品。同时,我们的方法通过将输入数据转换为各种形式,并考虑其协议以识别错误标记的样本来生成多视图预测。通过结合上述指标,我们介绍了提出的{\ it基于自动化的鲁棒训练}(SRT)方法,该方法可以用嘈杂的标签过滤样品,以减少其对训练的影响。广泛使用的公共数据集的实验表明,所提出的方法在某些类别中实现了最新的性能,而无需训练双网络。
translated by 谷歌翻译
我们提出了一个混合框架Oppinn:物理知识的神经网络(PINN),其中运算符学习以近似于Fokker-Planck-Landau(FPL)方程的解决方案。 Oppinn框架分为两个步骤:步骤1和步骤2。在步骤1期间对操作员替代模型进行训练后,PINN可以使用预训练的替代模型在步骤2期间有效地近似于FPL方程。操作员替代模型可大大降低计算成本,并通过近似FPL方程中的复杂Landau碰撞积分来提高PINN。操作员替代模型也可以与传统的数值方案结合使用。当速度模式变大时,它在计算时间中提供了高效率。使用Oppinn框架,我们在各种类型的初始条件下为FPL方程提供了神经网络解决方案,并在两个和三个维度中提供相互作用模型。此外,基于FPL方程的理论属性,我们表明,随着预定义的损耗函数的降低,近似的神经网络解决方案会收敛到FPL方程的先验经典解。
translated by 谷歌翻译
人类具有出色的能力来推理绑架并假设超出图像的字面内容的内容。通过识别散布在整个场景中的具体视觉线索,我们几乎不禁根据我们的日常经验和对世界的知识来提出可能的推论。例如,如果我们在道路旁边看到一个“ 20英里 /小时”的标志,我们可能会假设街道位于居民区(而不是在高速公路上),即使没有房屋。机器可以执行类似的视觉推理吗?我们提出了Sherlock,这是一个带注释的103K图像的语料库,用于测试机器能力,以超出字面图像内容的绑架推理。我们采用免费观看范式:参与者首先观察并识别图像中的显着线索(例如,对象,动作),然后给定线索,然后提供有关场景的合理推论。我们总共收集了363K(线索,推理)对,该对形成了首个绑架的视觉推理数据集。使用我们的语料库,我们测试了三个互补的绑架推理轴。我们评估模型的能力:i)从大型候选人语料库中检索相关推论; ii)通过边界框来定位推论的证据,iii)比较合理的推论,以匹配人类在新收集的19k李克特级判断的诊断语料库上的判断。尽管我们发现具有多任务目标的微调夹RN50x64优于强大的基准,但模型性能与人类一致之间存在着重要的净空。可在http://visualabduction.com/上获得数据,模型和排行榜
translated by 谷歌翻译
复杂物理动态的建模和控制在真实问题中是必不可少的。我们提出了一种新颖的框架,通常适用于通过用特殊校正器引入PDE解决方案操作员的代理模型来解决PDE受约束的最佳控制问题。所提出的框架的过程分为两个阶段:解决PDE约束(阶段1)的解决方案操作员学习并搜索最佳控制(阶段2)。一旦替代模型在阶段1训练,就可以在没有密集计算的阶段2中推断出最佳控制。我们的框架可以应用于数据驱动和数据的案例。我们展示了我们对不同控制变量的各种最优控制问题的成功应用,从泊松方程到汉堡方程的不同PDE约束。
translated by 谷歌翻译
We study model-based reinforcement learning (RL) for episodic Markov decision processes (MDP) whose transition probability is parametrized by an unknown transition core with features of state and action. Despite much recent progress in analyzing algorithms in the linear MDP setting, the understanding of more general transition models is very restrictive. In this paper, we establish a provably efficient RL algorithm for the MDP whose state transition is given by a multinomial logistic model. To balance the exploration-exploitation trade-off, we propose an upper confidence bound-based algorithm. We show that our proposed algorithm achieves $\tilde{\mathcal{O}}(d \sqrt{H^3 T})$ regret bound where $d$ is the dimension of the transition core, $H$ is the horizon, and $T$ is the total number of steps. To the best of our knowledge, this is the first model-based RL algorithm with multinomial logistic function approximation with provable guarantees. We also comprehensively evaluate our proposed algorithm numerically and show that it consistently outperforms the existing methods, hence achieving both provable efficiency and practical superior performance.
translated by 谷歌翻译
We present X-Decoder, a generalized decoding model that can predict pixel-level segmentation and language tokens seamlessly. X-Decodert takes as input two types of queries: (i) generic non-semantic queries and (ii) semantic queries induced from text inputs, to decode different pixel-level and token-level outputs in the same semantic space. With such a novel design, X-Decoder is the first work that provides a unified way to support all types of image segmentation and a variety of vision-language (VL) tasks. Further, our design enables seamless interactions across tasks at different granularities and brings mutual benefits by learning a common and rich pixel-level visual-semantic understanding space, without any pseudo-labeling. After pretraining on a mixed set of a limited amount of segmentation data and millions of image-text pairs, X-Decoder exhibits strong transferability to a wide range of downstream tasks in both zero-shot and finetuning settings. Notably, it achieves (1) state-of-the-art results on open-vocabulary segmentation and referring segmentation on eight datasets; (2) better or competitive finetuned performance to other generalist and specialist models on segmentation and VL tasks; and (3) flexibility for efficient finetuning and novel task composition (e.g., referring captioning and image editing). Code, demo, video, and visualization are available at https://x-decoder-vl.github.io.
translated by 谷歌翻译
Context is vital for commonsense moral reasoning. "Lying to a friend" is wrong if it is meant to deceive them, but may be morally okay if it is intended to protect them. Such nuanced but salient contextual information can potentially flip the moral judgment of an action. Thus, we present ClarifyDelphi, an interactive system that elicits missing contexts of a moral situation by generating clarification questions such as "Why did you lie to your friend?". Our approach is inspired by the observation that questions whose potential answers lead to diverging moral judgments are the most informative. We learn to generate questions using Reinforcement Learning, by maximizing the divergence between moral judgements of hypothetical answers to a question. Human evaluation shows that our system generates more relevant, informative and defeasible questions compared to other question generation baselines. ClarifyDelphi assists informed moral reasoning processes by seeking additional morally consequential context to disambiguate social and moral situations.
translated by 谷歌翻译
Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.
translated by 谷歌翻译